N-(3-{[2-(2-fluorophenyl)quinazolin-4-yl]amino}phenyl)acetamide : A member of the class of quinazolines that is quinazoline which is substituted at positions 2 and 4 by 2-fluorophenyl and (3-acetamidophenyl)nitrilo groups, respectively. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]
ID Source | ID |
---|---|
PubMed CID | 4523899 |
CHEMBL ID | 1376330 |
CHEBI ID | 105960 |
Synonym |
---|
HMS2591D15 |
MLS000682643 |
n-(3-{[2-(2-fluorophenyl)quinazolin-4-yl]amino}phenyl)acetamide |
smr000312000 |
OPREA1_030894 |
CHEMDIV1_016648 , |
EU-0032373 |
n-[3-[[2-(2-fluorophenyl)-4-quinazolinyl]amino]phenyl]acetamide |
CHEBI:105960 |
ZINC02921811 |
HMS634E16 |
n-[3-[[2-(2-fluorophenyl)quinazolin-4-yl]amino]phenyl]acetamide |
CHEMBL1376330 |
Q27183752 |
sr-01000588560 |
SR-01000588560-1 |
Class | Description |
---|---|
quinazolines | Any organic heterobicyclic compound based on a quinazoline skeleton and its substituted derivatives. |
secondary amino compound | A compound formally derived from ammonia by replacing two hydrogen atoms by organyl groups. |
aromatic amine | An amino compound in which the amino group is linked directly to an aromatic system. |
acetamide | A member of the class of acetamides that results from the formal condensation of acetic acid with ammonia. |
monofluorobenzenes | Any member of the class of fluorobenzenes containing a mono- or poly-substituted benzene ring carrying a single fluorine substitutent. |
substituted aniline | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 25.1189 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 8.9125 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 14.5750 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 18.3564 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 24.9053 | 0.1800 | 13.5574 | 39.8107 | AID1460; AID1468 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
glucocerebrosidase | Homo sapiens (human) | Potency | 14.1254 | 0.0126 | 8.1569 | 44.6684 | AID2101 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 14.5810 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 35.4813 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 0.0100 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
transient receptor potential cation channel subfamily V member 1 | Homo sapiens (human) | Potency | 4.4027 | 0.0912 | 0.0912 | 0.0912 | AID623958; AID623959 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 22.3872 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | 2014 | Journal of biomolecular screening, Jul, Volume: 19, Issue:6 | A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. |
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 4 (57.14) | 24.3611 |
2020's | 2 (28.57) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.22) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 7 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |